Dynamic Dopamine Modulation in the Basal Ganglia: A Neurocomputational Account of Cognitive Deficits in Medicated and Nonmedicated Parkinsonism
نویسنده
چکیده
Dopamine (DA) depletion in the basal ganglia (BG) of Parkinson's patients gives rise to both frontal-like and implicit learning impairments. Dopaminergic medication alleviates some cognitive deficits but impairs those that depend on intact areas of the BG, apparently due to DA ''overdose.'' These findings are difficult to accommodate with verbal theories of BG/DA function, owing to complexity of system dynamics: DA dynamically modulates function in the BG, which is itself a modulatory system. This article presents a neural network model that instantiates key biological properties and provides insight into the underlying role of DA in the BG during learning and execution of cognitive tasks. Specifically, the BG modulates the execution of ''actions'' (e.g., motor different parts of the frontal cortex. Phasic changes in DA, which occur during error feedback, dynamically modulate the BG threshold for facilitating/suppressing a cortical command in response to particular stimuli. Reduced dynamic range of DA explains Parkinson and DA overdose deficits with a single underlying dysfunction, despite overall differences in raw DA levels. Simulated Parkinsonism and medication effects provide a theoretical basis for behavioral data in probabilistic classification and reversal tasks. The model also provides novel testable predictions for neuropsychological and pharmacological studies, and motivates further investigation of BG/DA interactions with the prefrontal cortex in working memory.
منابع مشابه
A dopaminergic basis for working memory, learning and attentional shifting in Parkinsonism.
Parkinson's disease (PD) patients exhibit cognitive deficits, including reinforcement learning, working memory (WM) and set shifting. Computational models of the basal ganglia-frontal system posit similar mechanisms for these deficits in terms of reduced dynamic range of striatal dopamine (DA) signals in both medicated and non-medicated states. Here, we report results from the first study that ...
متن کاملNeurocomputational models of motor and cognitive deficits in Parkinson's disease.
We review the contributions of biologically constrained computational models to our understanding of motor and cognitive deficits in Parkinson's disease (PD). The loss of dopaminergic neurons innervating the striatum in PD, and the well-established role of dopamine (DA) in reinforcement learning (RL), enable neural network models of the basal ganglia (BG) to derive concrete and testable predict...
متن کاملA Neurocomputational Model of Dopamine and Prefrontal-Striatal Interactions during Multicue Category Learning by Parkinson Patients
Most existing models of dopamine and learning in Parkinson disease (PD) focus on simulating the role of basal ganglia dopamine in reinforcement learning. Much data argue, however, for a critical role for prefrontal cortex (PFC) dopamine in stimulus selection in attentional learning. Here, we present a new computational model that simulates performance in multicue category learning, such as the ...
متن کاملA Neurocomputational Model of Dopamine and Prefrontal–Striatal Interactions during Multicue Category Learning by Parkinsonʼs Patients
■ Most existing models of dopamine and learning in Parkinsonʼs disease (PD) focus on simulating the role of basal ganglia dopamine in reinforcement learning. Much data argue, however, for a critical role for prefrontal cortex (PFC) dopamine in stimulus selection in attentional learning. Here, we present a new computational model that simulates performance in multicue category learning, such as ...
متن کاملA neurocomputational model of tonic and phasic dopamine in action selection: a comparison with cognitive deficits in Parkinson's disease.
The striatal dopamine signal has multiple facets; tonic level, phasic rise and fall, and variation of the phasic rise/fall depending on the expectation of reward/punishment. We have developed a network model of the striatal direct pathway using an ionic current level model of the medium spiny neuron that incorporates currents sensitive to changes in the tonic level of dopamine. The model neuron...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cognitive neuroscience
دوره 17 1 شماره
صفحات -
تاریخ انتشار 2005